Lecture 4
 pH Calculations Byl Dr. Ekhlas Q. J.

pH Scale

Acid
Alkaline

What is pH ?

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}(\mathrm{aq})\right]
$$

where $\left[\mathrm{H}^{+}\right]$is the concentration of hydrogen ions in $\mathrm{mol} \mathrm{dm}^{-3}$
to convert pH into hydrogen ion concentration

IONIC PRODUCT OF WATER $\quad \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right] \mathrm{mol}^{2} \mathrm{dm}^{-6}$

$$
=1 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}\left(\text { at } 25^{\circ} \mathrm{C}\right)
$$

Calculating pH - weak acids

A weak acid is one which only partially dissociates in aqueous solution

A weak acid, HA, dissociates as follows

$$
\begin{equation*}
\mathrm{HA}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{A}_{(\mathrm{aq})}^{-} \tag{1}
\end{equation*}
$$

Calculating pH - weak acids

A weak acid is one which only partially dissociates in aqueous solution

A weak acid, HA, dissociates as follows
Applying the Equilibrium Law

The ions are formed in equal amounts, so
therefore

$$
\begin{align*}
& \mathrm{HA}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{A}^{-}{ }_{(\mathrm{aq})} \tag{1}\\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]\left[\mathrm{A}^{-}{ }_{(\mathrm{aq})}\right]}{\left[\mathrm{HA}_{(\mathrm{aq})}\right]} \mathrm{mol} \mathrm{dm} \tag{2}
\end{align*}
$$

Rearranging (3) gives therefore

$$
\begin{aligned}
{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq)})}\right]^{2} } & =\left[\mathrm{HA}_{(\mathrm{aq)}}\right] \mathrm{K}_{\mathrm{a}} \\
{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq)})}\right] } & =\sqrt{\left[\mathrm{HA}_{(\mathrm{aq)}}\right] \mathrm{K}_{\mathrm{a}}} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]
\end{aligned}
$$

$$
\begin{align*}
{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq)}}\right] } & =\left[\mathrm{A}^{-}{ }_{(\mathrm{aq})}\right] \\
\mathrm{K}_{\mathrm{a}} & =\frac{\left.\left[\mathrm{H}^{+}{ }_{(\mathrm{aq)}}\right]\right]^{2}}{\left[\overline{\mathrm{HA}_{(\mathrm{aq)}}}\right]} \tag{3}
\end{align*}
$$

Calculating pH - weak acids

Calculate the pH of a weak acid HX of concentration $0.1 \mathrm{M}\left(\mathrm{K}_{\mathrm{a}}=4 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$

HX dissociates as follows
Dissociation constant for a weak acid

Substitute for X^{-}as ions are formed in equal amounts and the rearrange equation

$$
\begin{aligned}
\mathrm{HX}_{(\mathrm{aq})} & \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{X}^{-}{ }_{(\mathrm{aq})} \\
\mathrm{K}_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq)}}\right]\left[\mathrm{X}^{-}{ }_{(\mathrm{aq})}\right]}{\left[\mathrm{HX}_{(\mathrm{aq)})}\right]} \mathrm{mol} \mathrm{dm}
\end{aligned}
$$

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\sqrt{\left[\mathrm{HX}_{(\mathrm{aq)}}\right] \mathrm{K}_{\mathrm{a}}} \quad \mathrm{~mol} \mathrm{dm}^{-3}
$$

ASSUMPTION

HA is a weak acid so it will not have dissociated very much. You can assume that its equilibrium concentration is approximately that of the original concentration

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\sqrt{0.1 \times 4 \times 10^{-5}} \mathrm{~mol} \mathrm{dm}^{-3}} \\
& =\sqrt{4.00 \times 10^{-6}} \quad \mathrm{~mol} \mathrm{dm}^{-3} \\
& =2.00 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \\
& \text { ANSWER } \quad \mathrm{pH}=-\log \left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=2.699
\end{aligned}
$$

Format for solving problems of weak acids using an equilibrium table

$$
\mathrm{HA}(a q) \rightleftarrows \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q)
$$

Initial concentration (M):
Change in concentration (M):
Equilibrium concentration (M) :

- Fill in initial concentrations
- Determine concentration changes in terms of x
- Determine equilibrium concentrations in terms of initial concentrations (C_{i}) and x
- Substitute into the K_{a} expression and solve for x

Percent Ionization

- Another way to measure the strength of an acid is to determine the percentage of acid molecules that ionize when dissolved in water; this is called the percent ionization.
- The higher the percent ionization, the stronger the acid.

$$
\text { Percent lonization }=\frac{\text { molarity of ionized acid }}{\text { initial molarity of acid }} \times 100 \%
$$

- Because [ionized acid $]_{\text {equil }}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {equil }}$

$$
\text { Percent lonization }=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {equil }}}{[\mathrm{HA}]_{\text {init }}} \times 100 \%
$$

Problem: (a) Calculate pH and (b) the fraction of
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ ionized at equilibrium. The concentration of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ is 1 M (initial, or total). The K_{a} for acetic acid is 1.8×10^{-5}

Estimate major species in solution $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ (a weak acid) and $\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \leftrightharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$

$$
\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

$$
\begin{aligned}
& K_{\mathrm{a}}=1.8 \times 10^{-5} \\
& \mathrm{~K}_{\mathrm{w}}=1.0 \times 10^{-14}
\end{aligned}
$$

Problem: (a) Calculate pH and (b) the fraction of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ ionized at equilibrium.

$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \leftrightharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$
 Initial
 Equilibrium
 1.0M
 1.0 - x
 x
 0
 x

