Lecture 4 pH Calculations By/ Dr. Ekhlas Q. J.

What is pH?

$$pH = -log_{10} [H^+(aq)]$$

where [H+] is the concentration of hydrogen ions in mol dm-3

to convert pH into hydrogen ion concentration

[H⁺(aq)] = antilog (-pH)

IONIC PRODUCT OF WATER $K_w = [H^+(aq)] [OH^-(aq)] mol^2 dm^{-6}$

 $= 1 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6} \text{ (at } 25^{\circ}\text{C)}$

<u>Amphoterism</u> - an ion or molecule can act as an acid or base depending upon the reaction conditions

Calculating pH - weak acids

A weak acid is one which only partially dissociates in aqueous solution

A weak acid, HA, dissociates as follows

$$HA_{(aq)} \iff H^{+}_{(aq)} + A^{-}_{(aq)}$$
(1)

Calculating pH - weak acids

A weak acid is one which only partially dissociates in aqueous solution

A weak acid, HA, dissociates as follows	$HA_{(aq)} \iff H^+_{(aq)} + A^{(aq)}$	(1)
Applying the Equilibrium Law	$K_{a} = [H^{+}_{(aq)}] [A^{-}_{(aq)}] \text{mol dm}^{-3}$ $\underline{[HA_{(aq)}]}$	(2)
The ions are formed in equal amounts, so	$[H^{+}_{(aq)}] = [A^{-}_{(aq)}]$	
therefore	$K_a = [H^+_{(aq)}]^2$	(3)
	[HA _(aq)]	
Rearranging (3) gives	$[H_{(aq)}]^2 = [HA_{(aq)}] K_a$	
therefore	$[H^{+}_{(aq)}] = \sqrt{[HA_{(aq)}]} K_{a}$	
	pH = -log [H+ _(aq)]	

Calculating pH - weak acids

Calculate the pH of a weak acid HX of concentration 0.1M ($K_a = 4x10^{-5}$ mol dm⁻³)

HX dissociates as follows

Dissociation constant for a weak acid

Substitute for X⁻ as ions are formed in equal amounts and the rearrange equation

$$HX_{(aq)} \iff H^{+}_{(aq)} + X_{(aq)}$$

$$K_{a} = [H^{+}_{(aq)}] [X^{-}_{(aq)}] \mod dm^{-3}$$

$$[H^{+}_{(aq)}] = \sqrt{[HX_{(aq)}]} K_{a} \mod dm^{-3}$$

ASSUMPTION

HA is a weak acid so it will not have dissociated very much. You can assume that its equilibrium concentration is approximately that of the original concentration

$$[H^{+}_{(aq)}] = \sqrt{0.1 \times 4 \times 10^{-5} \text{ mol dm}^{-3}}$$
$$= \sqrt{4.00 \times 10^{-6}} \text{ mol dm}^{-3}$$
$$= 2.00 \times 10^{-3} \text{ mol dm}^{-3}$$
ANSWER $pH = -\log [H^{+}_{(aq)}] = 2.699$

Format for solving problems of weak acids using an equilibrium table

$$HA(aq) \longleftarrow H^+(aq) + A^-(aq)$$

- Initial concentration (*M*):
- Change in concentration (*M*):
- Equilibrium concentration (*M*):

- Fill in initial concentrations
- Determine concentration changes in terms of x
- Determine equilibrium concentrations in terms of initial concentrations (C_i) and x
- Substitute into the K_a expression and solve for x

Percent Ionization

- Another way to measure the strength of an acid is to determine the percentage of acid molecules that ionize when dissolved in water; this is called the percent ionization.
 - The higher the percent ionization, the stronger the acid. Percent lonization = $\frac{\text{molarity of ionized acid}}{\text{initial molarity of acid}} \times 100\%$
- Because [ionized acid]_{equil} = $[H_3O^+]_{equil}$

Percent Ionization = $\frac{[H_3O^+]_{equil}}{[HA]_{init}} \times 100\%$

Problem: (a) Calculate pH and (b) the fraction of CH_3CO_2H ionized at equilibrium. The concentration of CH_3CO_2H is 1 M (initial, or total). The K_a for acetic acid is 1.8 x 10⁻⁵

Estimate major species in solution CH_3CO_2H (a weak acid) and H_2O .

 $\begin{array}{lll} \mathsf{CH}_3\mathsf{CO}_2\mathsf{H} &\leftrightarrows &\mathsf{H}^+ + \mathsf{CH}_3\mathsf{CO}_2^- & \mathsf{K}_a = 1.8 \ x \ 10^{-5} \\ \\ \mathsf{H}_2\mathsf{O} & \leftrightarrows &\mathsf{H}^+ + \mathsf{OH}^- & \mathsf{K}_w = 1.0 \ x \ 10^{-14} \end{array}$

Problem: (a) Calculate pH and (b) the fraction of CH_3CO_2H ionized at equilibrium.

	CH ₃ CO ₂ H ≤	⇒ H' +	$-CH_3CO_2$
Initial	1.0M	~ 0	0
Equilibrium	1.0 – x	X	x